
Anish Athalye1, M. Frans Kaashoek1, Nickolai Zeldovich1, Joseph Tassarotti2
1 MIT CSAIL 2 New York University

Leakage models are a leaky abstraction
The case for cycle-level verification of constant-time cryptography

Crypto code is vulnerable to timing side channels

Dedicated hardware provides strong security for applications

Simpler than desktop/server-class processors

Runs crypto code without sharing or interruption

Eliminates many side channels by design

Remaining challenge: overall request timing

Remote timing attacks are practical (Brumley & Boneh, 2003)

Thales Luna PCIe HSM YubiKeyApple T2 security chip Google OpenTitan

Big Number Accelerator

2

Host
CPU

send request

get response

HSM
CPU

State of the art: formal verification against leakage models

Prove that leakage is independent of secrets

Adversary observes PC addresses, memory access addresses, and operands of arithmetic ops

Most verified cryptography follows this approach (or similar)

Almeida et al. 2016, Vale (Bond et al. 2017), HACL (Zinzindohoué et al. 2017), Fiat Crypto (Erbsen et al., 2019), EverCrypt (Protzenko et al. 2020)

Downsides

Gap between leakage model and actual hardware behavior: might miss leakage, might be too conservative

Analysis of high-level language doesn't apply to systems code (access to control registers, peripherals)

Trust compiler to preserve constant-time behavior

3

Our plan: verify timing of software directly against hardware

Prove that...

a particular hardware implementation (RTL-level)

runs a particular program (binary, memory image)

in constant time (cycles)

for all inputs

4

Contributions

Chroniton, tool to verify software timing behavior against hardware RTL

Evaluation on off-the-shelf software + hardware:

Ed25519 portable C implementation + {PicoRV32, Ibex, biRISC-V}

X25519 OTBN assembly implementation + OpenTitan Big Number Accelerator

more info + code at anish.io/chroniton

5

https://anish.io/chroniton

An approximation: testing/fuzzing in RTL-level simulation

Software
.c, .s

Hardware
.v

Binary
firmware.hex

compile

RTL simulator

test if it runs in
constant time

(on a specific

concrete input)

$readmemh("firmware.hex", rom)

6

Chroniton
(symbolic RTL

simulation)

✅ / ❌

formally verify that
it runs in constant
time (for all inputs)

Approach: exhaustive testing using symbolic execution

Software
.c, .s

Hardware
.v

Binary
firmware.hex

compile

$readmemh("firmware.hex", rom)

7

The core: a symbolic RTL simulator

Compile Verilog HDL to Rosette (Torlak & Bodik 2014) code

Rosette: solver-aided programming language built on top of Racket

Cycle-level circuit simulation, with concrete or symbolic state

8

Verilog to Rosette compilation
module counter (
 input clk,
 input en,
 output reg [31:0] counter
);

always @(posedge clk)
 if (en)
 counter <= counter + 32'h1;

endmodule

9

(struct state (...))

(define (new-symbolic-state)
 ...)

(define (step state)
 ...)

(define (with-input state input)
 ...)

(define (get-output state)
 ...)

Verilog code Rosette code

compile to state machine

representation in Rosette

Concrete evaluation of circuits

(define s (new-zeroed-state))

state {
 counter: (bv #x00000000 32)
}

10

(step (with-input s (input 'en #t)))

state {
 counter: (bv #x00000001 32)
}

Symbolic evaluation of circuits

(define s (new-symbolic-state))

state {
 counter: counter$4d1
}

11

(step (with-input s (new-symbolic-input)))

state {
 counter: (ite en$f7c (bvadd (bv 1 32) counter$4d1) counter$4d1)
}

Symbolic execution of software on hardware

Can have partially concrete,
partially symbolic circuit state

Compiled binary loaded into
circuit's ROM

What we are symbolically
executing: circuit's step function

12

state {
 cpu.alu_out_q: (ite (bveq (bv #b1 1) soc.cpu.is_lui_auipc_jal_jalr_addi_add_sub$bd7) ...)
 cpu.cpu_state: (bv #x40 8)
 cpu.decoded_imm: (ite (&& (bveq (bv #b1 1) soc.cpu.decoder_trigger$caf) ...) ...)
 cpu.decoded_imm_j: soc.cpu.decoded_imm_j$4da
 cpu.decoded_rs2: soc.cpu.decoded_rs2$92e
 ...
 cpu.cpuregs:
 0: soc.cpu.cpuregs[0]$e57
 1: soc.cpu.cpuregs[1]$a0f
 ...
 ram:
 0: soc.ram.ram[0]$a12
 1: soc.ram.ram[1]$fe8
 ...
 rom:
 0: (bv #x20001117 32)
 1: (bv #x80010113 32)
 2: (bv #x014000ef 32)
 3: (bv #x070000ef 32)
 4: (bv #x0ff00513 32)
 5: (bv #x05c000ef 32)
 ...
}

SoC state, including CPU and memory state

Verifying timing behavior

Make input data symbolic

Just some bytes in data memory

Count cycles until hardware finishes executing

Check that completion time is independent of symbolic variables

That's all we need for basic examples!

Ed25519 on PicoRV32, verified to run in 4,046,295 cycles

13

#include "ed25519.h"

#define MSG_SIZE 100
unsigned char pk[32], sk[64],
 msg[MSG_SIZE], sig[64];

void main() {
 ed25519_sign(sig, msg,
 sizeof(msg), pk, sk);
}

The case for cycle-level verification

Precise analysis

High confidence in non-leakage: verify directly against hardware / RTL

Not too conservative: directly verify timing behavior

Reason about any code (compiled binary)

Use any hardware features, CSRs, peripherals; eliminate trust in compiler

Limitations / open problems

Verify only simpler embedded CPUs (suits the application domain of HSMs and accelerators)

Repeat verification for each hardware target (which is why we use automation)

Programs verified end-to-end, can we say something about libraries / program fragments?

14

Case studies: high confidence in non-leakage

Hardware Software Cycles Verification time
(single-threaded) LOC of hints

PicoRV32 Ed25519 4,046,295 2 hours 0

biRISC-V Ed25519 692,287 24 hours 10

OpenTitan Big
Number

Accelerator (OTBN)
X25519 114,490 10 hours 5

15

Case studies: not overly conservative
Constant-time cryptography and parsing
avoid branching on secrets, even when
convenient

Verified constant-time on PicoRV32

Need different padding for biRISC-V

16

if (secret) {
 *result = *a + *b;
 asm volatile(
 "beq zero, zero, 0f \n\t"
 "0: \n\t"
);
} else {
 *result = *a - *b;
 asm volatile("nop");
}

Code running on PicoRV32

Why it works: minimizing symbolic branching

Code already written to be constant time

Hardware has natural separation between control and data path

Conceptually, executing concrete program on symbolic data

Circuit's control state stays concrete while data is symbolic

Repeated symbolic evaluation of circuit's step function doesn't blow up

Rosette

Hybrid symbolic evaluation — best of both worlds of symbolic execution + model checking

Rewrite rules — optimizations that simplify terms

17

Hints minimize symbolic evaluation

Minimizing symbolic evaluation

overapproximate — often don't need to track precise expressions to reason about timing

Optimizing symbolic branching

concretize — to invoke the solver to concretize control state

case-split — perform case analysis, explore branches separately

18

Summary

Verify timing behavior of software directly against hardware (RTL)

Using symbolic execution + a bit of human guidance

Examples include Ed25519 on biRISC-V (6-stage dual-issue RISC-V processor)

code, docs, and expository examples:

anish.io/chroniton

19

https://anish.io/chroniton

