
The K2 Architecture for Trustworthy
Hardware Security Modules

1

Anish Athalye1, M. Frans Kaashoek1, Nickolai Zeldovich1, Joseph Tassarotti2
1 MIT CSAIL 2 New York University

HSMs: powerful tools for securing systems

Factor out core security operations

Provide security under host compromise

Many types of HSMs

U2F token

iPhone Secure Enclave

PKCS#11 HSM

WhatsApp Backup Key Vault

Hundreds of millions of deployed HSMs

Let's Encrypt

Boulder CA Certificate Signing HSM

PCIe

(holds private key)

2

HSMs suffer from bugs

Hardware

Software

Timing side channels

33

Goal: HSMs without security vulnerabilities

Rule out hardware, software, and timing side-channel vulnerabilities

Threat model

Powerful adversary that gains control of host machine

Full control over I/O interface to HSM

Physical attacks and other side channels: out of scope

4

Challenge: timing side channels at hardware level

Cryptographic constant-time software not enough

Tricky hardware timing behavior

"ARM Cortex M3: manual says umull opcode takes 3 to 5 cycles, the 'short' counts (3 or 4) being taken only if both

operands are numerically less than 65536... measurements show that short cycle count could occur not only in the
documented case, but also when one or both of the operands is zero or a power of 2"

System software, CSRs, I/O, peripherals, and persistent storage

5

Prior work: Knox [OSDI'22] / Information-Preserving Refinement

Information-Preserving Refinement (IPR)

Implementation leaks no more than specification

Knox: verified HSM hardware/software

End-to-end

Monolithic verification of software + hardware

Limited scalability

6

anish.io/knox

CPU

ROM
(C code)

RAM

FRAM
(durable)

UART

tx rx rts cts

CA certificate signing HSM

var signing_key = null

def initialize(new_key):
 signing_key = new_key

def sign_certificate(cert):
 rsa_sign(signing_key, cert)

~

Approach: K2 separation architecture

K2 architecture: isolate I/O, storage, and computation over secret state

Verify software correctness by leveraging prior work (HACL★)

Verify correctness down to hardware level using a new tool called Concordance

Verify cycle-level timing behavior using a new tool called Chroniton

7

Approach: K2 separation architecture

K2 architecture: isolate I/O, storage, and computation over secret state

Verify software correctness by leveraging prior work (HACL★)

Verify correctness down to hardware level using a new tool called Concordance

Verify cycle-level timing behavior using a new tool called Chroniton

8

K2 separation architecture: logical view

Separate I/O, storage, and computation
over secret state: as if running on
separate SoCs

Handling a single command: split into 5
phases

9

CPU running
I/O code

Storage

CPU running
storage code

CPU running
app code

USB Scratch
memory

1. Read
command

2. Load
state

3. Handle
command

4. Store
state

5. Write
output

K2 architecture: implementation

Single CPU

Tiny kernel runs phases in sequence

RISC-V PMP + state clearing for isolation

So e.g., bug in device driver can't leak secrets

10

Storage

CPU running I/O,
storage, and app code in

phases

USB Scratch
memory

PMP

Architecture simplifies timing verification

Core application code runs start-to-finish with
no interruption or intermediate observables

Reads state and command from RAM, writes
new state and response to RAM: no I/O or
persistence

Only timing leakage: end-to-end running time

of handle_command

11

void handle_command(
 char *state,
 char *command,
 char *new_state,
 char *response)
{
 ...
}

Verifying timing behavior at a cycle-accurate level

Chroniton: new tool to verify software timing behavior against hardware RTL

Proves that...

a particular hardware implementation (RTL-level)

runs a particular program (binary, memory image, e.g., handle_command)

in constant time (cycles)

for all inputs

12

An approximation: testing/fuzzing in RTL-level simulation

Software
.c, .s

Hardware
.v

Binary
firmware.hex

compile

RTL simulator

test if it runs in
constant time

(on a specific

concrete input)

$readmemh("firmware.hex", rom)

13

Chroniton
(symbolic RTL

simulation)

✅ / ❌

formally verify that
it runs in constant
time (for all inputs)

Chroniton: verifying timing behavior using symbolic execution

Software
.c, .s

Hardware
.v

Binary
firmware.hex

compile

$readmemh("firmware.hex", rom)

14

The core: a symbolic RTL simulator

Compile Verilog HDL to Rosette (Torlak & Bodik 2014) code

Rosette: solver-aided programming language built on top of Racket

Cycle-level circuit simulation, with concrete or symbolic state

15

Verilog to Rosette compilation
module counter (
 input clk,
 input en,
 output reg [31:0] counter
);

always @(posedge clk)
 if (en)
 counter <= counter + 32'h1;

endmodule

16

(struct state (...))

(define (new-symbolic-state)
 ...)

(define (step state)
 ...)

(define (with-input state input)
 ...)

(define (get-output state)
 ...)

Verilog code Rosette code

compile to state machine

representation in Rosette

Concrete evaluation of circuits

(define s (new-zeroed-state))

state {
 counter: (bv #x00000000 32)
}

17

(step (with-input s (input 'en #t)))

state {
 counter: (bv #x00000001 32)
}

Symbolic evaluation of circuits

(define s (new-symbolic-state))

state {
 counter: counter$4d1
}

18

(step (with-input s (new-symbolic-input)))

state {
 counter: (ite en$f7c (bvadd (bv 1 32) counter$4d1) counter$4d1)
}

Symbolic execution of software on hardware

Can have partially concrete,
partially symbolic circuit state

Compiled binary loaded into
circuit's ROM

What we are symbolically
executing: circuit's step function

19

state {
 cpu.alu_out_q: (ite (bveq (bv #b1 1) soc.cpu.is_lui_auipc_jal_jalr_addi_add_sub$bd7) ...)
 cpu.cpu_state: (bv #x40 8)
 cpu.decoded_imm: (ite (&& (bveq (bv #b1 1) soc.cpu.decoder_trigger$caf) ...) ...)
 cpu.decoded_imm_j: soc.cpu.decoded_imm_j$4da
 cpu.decoded_rs2: soc.cpu.decoded_rs2$92e
 ...
 cpu.cpuregs:
 0: soc.cpu.cpuregs[0]$e57
 1: soc.cpu.cpuregs[1]$a0f
 ...
 ram:
 0: soc.ram.ram[0]$a12
 1: soc.ram.ram[1]$fe8
 ...
 rom:
 0: (bv #x20001117 32)
 1: (bv #x80010113 32)
 2: (bv #x014000ef 32)
 3: (bv #x070000ef 32)
 4: (bv #x0ff00513 32)
 5: (bv #x05c000ef 32)
 ...
}

SoC state, including CPU and memory state

Verifying timing behavior

Make input data symbolic

Just some bytes in data memory

Count cycles until hardware finishes executing

Check that completion time is independent of symbolic variables

That's all we need for basic examples!

Ed25519 on PicoRV32, verified to run in 4,046,295 cycles

20

#include "ed25519.h"

#define MSG_SIZE 100
unsigned char pk[32], sk[64],
 msg[MSG_SIZE], sig[64];

void main() {
 ed25519_sign(sig, msg,
 sizeof(msg), pk, sk);
}

Case studies: high confidence in non-leakage

Hardware Software Cycles Verification time
(single-threaded) LOC of hints

PicoRV32 Ed25519 4,046,295 2 hours 0

biRISC-V Ed25519 692,287 24 hours 10

OpenTitan Big
Number Accelerator

(OTBN)
X25519 114,490 10 hours 5

21

Case studies: not overly conservative
Constant-time cryptography and parsing
avoid branching on secrets, even when
convenient

Verified constant-time on PicoRV32

Need different padding for biRISC-V

22

if (secret) {
 *result = *a + *b;
 asm volatile(
 "beq zero, zero, 0f \n\t"
 "0: \n\t"
);
} else {
 *result = *a - *b;
 asm volatile("nop");
}

Code running on PicoRV32

Case studies: HSM following K2 architecture

CA certificate signing HSM (signature oracle)

Hardware: OpenTitan SoC

Software

K2 kernel

I/O code

Storage code

Application code, on top of HACL★ library

Implemented but not yet verified

23

Related work

Hardware/software co-verification: Bedrock2 [PLDI'21], CakeML [PLDI'19]

Focused on correctness, not security

Application security verification: Ironclad Apps [OSDI'14]

Doesn't cover hardware or side channels

Verified cryptography: ct-verif [USEC'16], HACL [CCS'17], Fiat Crypto [S&P'19]

Doesn't cover hardware-level timing behavior

24

Summary

K2 architecture: separate I/O, storage, and computation over secret state

Chroniton: verify timing at hardware level using whole-circuit symbolic execution

25

anish.io/k2
github.com/anishathalye/chroniton

http://anish.io/k2
http://github.com/anishathalye/chroniton

